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Abstract. Density hyperpycnal currents are flows of a denser fluid running below a lighter fluid due to density gradient. A
mixing zone is developed in the fluid interface, where complex structures are generated by shear, buoyancy, and turbulence
interaction, triggering processes like entrainment and mixing. At large Reynolds number (Re), density currents are fully
turbulent. It is possible to delimit the mixing layer based on vorticity criterion, which identifies the layer position where
the spanwise vorticity ωz , is positive. The inner border is the vertical position where ωz changes sign, and the diffuse outer
border is chosen where ωz achieves 5% of the maximum vorticity. This study simulated conservative density currents in
lock-release configuration for Re=3450 and 8950, using Direct Numerical Simulation and Implicit Large Eddy Simulation,
respectively. It is used the high-order flow solver Xcompact3d to solve a Boussinesq system on a Cartesian mesh. The
statistical approach is applied to calculate fluctuations velocity via Reynolds decomposition for slumping, inertial and
viscous phases. It delimited the mixing layer to compare with the turbulent kinetic energy peaks and shear production,
dissipation, and buoyancy values for all the simulation times. The influence of the Re number on the evolution of the
mixing layer turbulent structures are analyzed.
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1. INTRODUCTION

Density currents are flows driven by buoyancy forces induced by the specific mass difference between the current
and the environment. Current propagation is determined by its ability to self-sustain these buoyant forces by limiting its
dilution with the ambient fluid.

Based on experiments on gravitational density currents, Middleton (1966) divided a typical density current into three
parts: head, body, and tail. In the head, the salient region, called the nose, is the result of the non-slip condition at the lower
limit, an unstable density profile and friction resistance at the upper limit, causing reverse circulation and the formation
of lobes and cleft structures (Kneller and Buckee, 2000). The mixing of the density current with the ambient fluid is an
important process, mainly produced by entrainment. Garcia and Parson (1996) experimentally demonstrated that mixing
at the head of the density stream depends on the Reynolds number Re. Density currents with high Re number are totally
turbulent, with Kelvin-Helmholtz vortices at the upper part of the current. At low Re, drag is less significant, making
viscous effects more important.

Although the experimental observations reveal complex velocity and density fields, the analytical modeling proposed
from simplified theoretical models and numerical simulations of the Navier-Stokes equations and mass transport equation
allows comparison with experimental data with acceptable accuracy.

The spreading rate of a density current could be described by the time evolution of the front velocity (Kàrmán (1940),
Benjamin (1968), Shin et al. (2004)). Huppert and Simpson (1980) characterize the propagation of a density front in three
regimes: an initial slumping phase where the current moves at an almost constant velocity, followed by an inertial phase
in which the current moves under the equilibrium of buoyancy and inertial forces, and finally, a viscous phase where
viscous effects dominate and balance the buoyancy. Power law expressions were obtained for the evolution of the density
current front in the different phases (Hoult (1972), Huppert and Simpson (1980), Cantero et al. (2007b)). The turbulence
structures evolution in a density current for moderate and high Re number show that the current develops the head, body,
and tail at slumping phase. At the interface, strong vortex shedding continues during this phase. During the inertial phase,
vortex shedding decreases in amplitude until it becomes negligible during the viscous phase (Cantero et al., 2008b).

One way to understand the influence of the turbulent dynamics on the vertical profiles of velocity and density is to
compute the turbulence kinetic energy (kt) budget. At the maximum velocity, the shear production of kt vanishes, but kt
itself does not due to advection and diffusion to the maximum velocity from the upper and lower shear layer (Dorrel et al.,
2019).

Ottolengui et al. (2017a) show the different regions of the current involved in the kt budget. The high values of kt are
present in the current and ambient fluid interface during the slumping phase, corresponding with the Kelvin–Helmholtz
vortices. The kt budget in the mixing layer is affected by the head dilution and the subsequent loss of the buoyancy force
driving the propagation of the current. The structural evolution of the current is related to the dynamics and stability of
the mixing layer (Pelmard et al., 2020).
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This work aims to describe the time evolution of kt budget terms to have an inside into the density current evolution
dynamics.

1.1 Mathematical and Numeric Model

The incompressible Navier–Stokes equations under the Boussinesq assumption are used in the present study to de-
scribe the dynamics of the conservative density current in the lock-release configuration. For the initial time, the highest
density fluid (ρ1) is confined to the domain Lxb × Ly × Lz , separated by a lock from the lower density fluid (ρ0) (Figure
1).

Figure 1: Initial problem setup.

The dimensionless governing equations in the Boussinesq approximation for a conservative current have the form:
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where ui, P and φ correspond to the unknowns of the problem, being the velocity vector, pressure and scalar (density), re-
spectively. Equations (1), (2) and (3) were dimensionalized using the characteristic velocity scale Ub =

√
Hg(ρ1 − ρ0)/ρ0,

with g being the gravitational acceleration and the characteristic length scale H = Ly . The quantities Re and Sc refer to
the dimensionless Reynolds numbers Re = UbH/ν and Schmitd Sc = ν/κ, where ν is the kinematic viscosity and κ the
mass diffusivity of the fluid ρ1.

In order to numerically solve the equations (1), (2) and (3) was used the Xcompact3D code, based on the sixth-
order compact finite difference scheme, in spatial differentiation, and it uses the third-order Adams-Bashforth scheme,
in temporal integration. The pressure term is solved with the Poisson equation in spectral space using the fast Fourier
transform (Bartholomew et al., 2020).

The velocity field boundary conditions established on the x axis is free slip, and on the z axis it is periodicity. In the
case of the y axis it is non-slip at y = 0 and free slip at y = Ly . For the scalar field, the boundary conditions for the axes
x and y are zero flux, and for the axis z it is periodicity.

The Reynolds numbers considered are Re = 3450 and 8950. The choice of these values is based on the problem
addressed in Cantero et al. (2007b) to make comparisons that validate the results obtained in the simulations. For these
moderate values of Re, the current behavior is little sensitive to the Schmidt number (Haertel et al., 2000), therefore it is
considered Sc = 1.

The computational domain is a parallelepiped Lx ×Ly ×Lz = (14, 1, 2). In this domain it is possible to visualize the
evolution of the different phases of the density current. The mesh resolution used for all simulations is Nx = 1945, Ny =
121, Nz = 240. The Re = 3450 simulation is solved using Direct Numerical Simulation (DNS) approach while the
Re = 8950 simulation with Implicit Large-Scale Simulation (iLES), based on the spectral turbulent viscosity model
(Lamballais et al. (2011), Dairay et al. (2017)).

1.2 Statistical approach

The statistical treatment of turbulence is based on the Reynolds decomposition of the physical quantities, which aims
to dissociate the averaged behavior of the flow from the local variations due to turbulent perturbations. Introducing the
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Reynolds ensemble-averaging operator, each physical quantity ui is decomposed as

ui = ui + u′
i, (4)

where ui represents the spanwise averaged value of ui and u′
i is the turbulent velocity fluctuations about this average.

The turbulent energy budget is obtained from the mean kinetic energy of the turbulent velocity fluctuations equation,

kt =
1

2
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Multiplying the Navier-Stokes equations (Eq. 2) by u′
i, taking the time average of all terms, subtracting the energy

equation for the mean flow, and integrating into the volume control V , it is found (Tennekes and Lumley, 1972),
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The P term refers to the production of turbulence by shear, representing energy conversion from the mean flow to
turbulent fluctuation. The B term is the buoyancy flux responsible for the production/destruction of turbulence (pos-
itive/negative) due to buoyant mixing in stratified flows. The ε term represents the viscous dissipation of turbulence
representing energy loss.

2. RESULTS

2.1 Front Velocity

Initially, the front current velocity (Vf ) is computed from the Average Thickness Layer minimum local method at
the front (Farenzena and Silvestrini, 2022). Figure 2 shows the evolution of the temporal front velocity for the two
Reynolds numbers (3450 and 8950) numerical simulations. It also includes the scale laws of the different propagation
phases (Cantero et al., 2007b) which identify the transition times between the different phases. For the higher Re number,
the density current transits from the slumping phase to the inertial phase at t ∼ 12, extending for a short period until
t ∼ 18 and then passing through the viscous phase until it dissipates. In the lower Re simulation case, the current directly
transitions from the slumping phase to the viscous phase at the t ∼ 15 without passing through the inertial phase. The
simulations show a good agreement with the reference.

Figure 2: Time evolution of the front velocity.

2.2 Turbulent Kinetic Energy and the Mixing Layer

The mixing layer develops at the interface of two parallel fluid streams that move horizontally with different velocities
and densities. It is characterized by instabilities that develop a mixing process. Density current with a high Reynolds
number (Re) develops Kelvin-Helmholtz instability, forming Kelvin-Helmholtz billows (Brown and Roshko, 1974). It is
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possible to identify the vortex structure from the vorticity (ω = ∇× u). Inside the current, in the near-wall zone ωz < 0
and in the mixing layer ωz > 0. Thus, the layer where ωz change sign is considered the inner mixing layer. The diffuse
outer border is defined where ωz achieves 5% of the maximum vorticity value. For the Re = 8950 case at t = 12, this
value is 0.032 and the Re = 3450 case at t = 15 the value is 0.013. The choice of these particular times is due to the
maximum value of the turbulent kinetic energy (Eq.5) kt as it is shown in Figure 3(a). For both Re cases is observed an
increase of kt, until the t = 8 for Re = 8950 case and the t = 15 for Re = 3450 case. This region is related to the
constant velocity phase (slumping phase), being the kt values for Re = 3450 case much smaller than the Re = 8950 case.
Kelvin-Helmholtz vortices begin to appear in this phase, going up to t = 15 for the Re = 3450 case, when the collapse of
the vortices is observed (Figure 3b). At this time, it reaches the highest value of kt, which starts to decrease in the viscous
phase, where the current dissipates. For all times, the kt distribution shows higher values in the region of the mixing layer,
characterized by the presence of intense shear. Similar results were revealed for the Re = 8950 case. During the slumping
phase, Kelvin-Helmholtz vortices are observed, which develop until they break up at t ∼ 10. This time coincides with the
time of maximum kt value, which remains almost constant until t = 20, during the inertial phase. After the collapse of
the vortices, the generation of smaller-scale structures and loss of vortex coherence is observed. Finally, the turbulence
dissipates in the viscous phase. These results could suggest that turbulence is more effective in the transition of slumping
to the inertial phase, where the maximum value of kt coincides with the collapse of the Kelvin-Helmholtz vortices.

(a) Time evolution of kt (b) Span-averaged kt

Figure 3: Time evolution of Turbulent Kinetic Energy (kt) for Re 8950 and 3450 (a), Span-averaged kt along the current
at the time of maximum kt value for Re = 8950 (up b) and Re = 3450 (down b). The contour lines correspond to the
mixing layer, where 0<ωz<0.05ωz,max

2.3 Turbulent Kinetic Energy Budget

The evolution of the different terms of the turbulent kinetic energy budget (Eq. 6) could give us an idea about the
source/sink of turbulence in the density current spreading. Figure 4 shows the contribution kt, P , B, ε, for the Re = 8950
case at t = 10. The region with higher kt values is the mixing layer which shows the maximum in the center of roll-up
Kelvin-Helmholtz vortices. The current head and nose region also presents kt values that could be related to the lobes and
cleft structures.

The production of kt by shear stress P , which extracts energy from the mean flow, has positive values in the Kelvin-
Helmholtz vortices and near-wall regions. The current nose presents negative values, which means suppressing of kt.

The turbulence driven by buoyancy B shows positive values due to unstable configurations. Positive B values are
observed in the current head, with maximum value in the current nose. Positive and negative B values are present in the
Kelvin-Helmholtz vortices region, with negative values in the vortex center.

The viscous dissipation ε is present in the current and ambient interface: the Kelvin-Helmholtz vortices region, the
current head, and the bottom. The Kelvin-Helmholtz vortices region presents the higher dissipation.

The time evolution of the turbulent kinetic energy budget terms (Figure 5) exhibits a dynamic of the density current
spreading for moderate Reynolds number. At initial times(t ∼ 4) related with slumping phase all terms increase until the
t = 10 for Re = 8950 and t = 15 for Re = 3450, where they reach the maximum value. In the Re = 3450 case, the
increase is slowly until t = 10. After this, it shows an abrupt increase until t = 15. Possibly this is the transition time
to the incoming phase. The increase in all terms is related to turbulent growth, visible with the Kelvin-Helmholtz eddies.
For the Re = 8950 case, after the t = 10 begins the inertial phase. The production P and ε terms rapidly decrease until
t = 20. The Buoyancy B term shows a decrease to negative value suggesting a buoyant stable configuration. It could
mean that only the production of turbulence by shear contributes to the turbulent kinetic energy in the inertial phase. All
turbulent kinetic energy budget terms decrease to low values in the viscous phases, for the Re = 3450 case, after t = 15,
and the Re = 8950 case, after t = 20.
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Figure 4: Turbulent kinetic energy budget terms for Re = 8950 at t = 10

Figure 5: Time evolution of turbulent kinetic energy budget terms; Production, Buoyancy and Dissipation, for Re = 8950
and Re = 3450

3. CONCLUSION

Density currents simulations in lock-exchange configuration have been performed to evaluate the turbulent develop-
ment characterized by the turbulent kinetic energy. Two moderate Reynolds numbers were considered: Re = 3450 and
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Re = 8950. The lower Reynolds number was performed using the DNS approach, while the higher Reynolds number
with the iLES approach. Reynolds decomposition was used to separate the mean flow from the turbulent fluctuations. The
rough statistics performed were computed from the span-average of momentum and scalar field to calculate the turbulent
kinetic energy and the terms contributing to its budget. The mixing layer was computed from the vorticity approach,
observing that the distribution of kt shows higher values in the region characterized by shear stress. The time evolution
of kt budget allowed us to distinguish the different phases of the current spreading. The results suggest that turbulence
development is higher at the end of the slumping phase. The maximum value of kt budget terms coincides with the col-
lapse of the Kelvin-Helmholtz vortices. It was also possible to observe in the kt budget terms, the current regions where
the turbulence is developing. The mixing layer showed the higher values of all terms related to the Kelvin-Helmholtz
billows. The current head presented significant values at the nose and bottom, related to lobes and cleft structures. The
turbulence driven by shear stress was most significant in the mixing layer. The turbulence driven by buoyancy showed an
unstable configuration in the current head and some spots in the mixing layer. More simulations with higher Re number
are necessary to better understand the inertial phase dynamics, with the Buoyancy negative values, and more simulations
with lower Re number to better understand the slumping phase dynamics with the slope change in the kt budget terms.
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